Are you ready for lead-free electronics?

Autor: Michael Pecht, Yuki Fukuda, Ji Wu, Valerie Eveloy, Sanka Ganesan
Rok vydání: 2005
Předmět:
Zdroj: IEEE Transactions on Components and Packaging Technologies. 28:884-894
ISSN: 1521-3331
DOI: 10.1109/tcapt.2005.859353
Popis: An expedient transition to lead-free electronics has become necessary for most electronics industry sectors, considering the European directives [The Waste of Electrical and Electronic Equipment (WEEE) directive requires manufacturers to reduce the disposal waste of electrical and electronic products by reuse, recycling, and other forms of recovery. The Restriction of the Use of Certain Hazardous Substances in Electrical and Electronic Equipment (RoHS) legislation restricts the use of lead, as well as cadmium, mercury, hexavalent chromium, and two halide-containing flame retardants, namely polybrominated biphenyls (PBB) and polybrominated diphenyl ethers (PBDE), in eight of the ten product categories identified in the WEEE directive. Unlike for WEEE, whereby EU member states are free to set more severe national legislation satisfying the WEEE directive requirements, RoHS is a single market directive. Both the WEEE and RoHS directives will become effective on July 1, 2006] , other possible legislative requirements, and market forces , . In fact, the consequences of not meeting the European July 2006 deadline for transition to lead-free electronics may translate into global market losses. Considering that lead-based electronics have been in use for over 40 years, the adoption of lead-free technology represents a dramatic change. The industry is being asked to adopt different electronic soldering materials , component termination metallurgies, and printed circuit board finishes. This challenge is accompanied by the need to requalify component-board assembly and rework processes, as well as implement test, inspection, and documentation procedures. In addition, lead-free technology is associated with increased materials, design, and manufacturing costs. [The cost of implementing the RoHS directive in the EU has been estimated to be US$ 20Bn . Intel Corporation's efforts to remove lead from its chips have been estimated to cost the company over US$ 100 million so far]. The use of lead-free materials and processes has also prompted new reliability concerns , as a result of different alloy metallurgies and higher assembly process temperatures relative to tin-lead soldering. This paper provides guidance to efficiently implement the lead-free transition process that accounts for the company's market share, associated exemptions, technological feasibility, product reliability requirements, and cost. Lead-free compliance, part and supplier selection, manufacturing, and education and training are addressed. The guidance is presented in the form of answers to key questions.
Databáze: OpenAIRE