Fed-batch ethanol fermentation at low temperature as a way to obtain highly concentrated alcoholic wines: Modeling and optimization

Autor: Antonio José Gonçalves Cruz, Kaio C.S. Rodrigues, Jorge Luiz Silveira Sonego, Ivan I. K. Veloso, Alberto C. Badino
Rok vydání: 2019
Předmět:
Zdroj: Biochemical Engineering Journal. 141:60-70
ISSN: 1369-703X
DOI: 10.1016/j.bej.2018.10.005
Popis: The effect of product inhibition on yeast hinders the production of wine with ethanol concentration above 80.0 g L−1 (∼10°GL) in the industrial ethanol production process commonly performed at 34 °C. Lowering the fermentation temperature is a way to produce wines with higher ethanol contents. In this work, batch fermentations were carried out at temperatures of 28, 30, 32, and 34 °C, with initial substrate concentration of 180.0 g L−1, using industrial yeast under conditions reproducing those found in industry. The Andrews-Levenspiel hybrid kinetic model, considering viable cells, showed an excellent fit to the experimental data. Kinetic parameters were determined for the different temperatures. The model was used to simulate fed-batch fermentations at different temperatures, with the same total substrate concentration, resulting in satisfactory descriptions of the process behaviors. A new optimization strategy to obtain the maximum possible ethanol production, based on the CEmax parameter of the Andrews-Levenspiel kinetic model, provided ethanol production of up to 134.7 g L-1 (17.1°GL) at 28 °C and 305.4 g L−1 substrate. A modification was made to the Andrews-Levenspiel kinetic model, relating the n parameter to the final ethanol concentration (CEf), in order to enable the model to describe the behavior of fed-batch fermentations performed with high substrate concentration and at temperatures from 28 to 34 °C.
Databáze: OpenAIRE