A game‐theoretic proof of Shelah's theorem on labeled trees
Autor: | Trevor M. Wilson |
---|---|
Rok vydání: | 2020 |
Předmět: | |
Zdroj: | Mathematical Logic Quarterly. 66:190-194 |
ISSN: | 1521-3870 0942-5616 |
DOI: | 10.1002/malq.201900060 |
Popis: | We give a new proof of a theorem of Shelah which states that for every family of labeled trees, if the cardinality $\kappa$ of the family is much larger (in the sense of large cardinals) than the cardinality $\lambda$ of the set of labels, more precisely if the partition relation $\kappa \to (\omega)^{\mathord{ |
Databáze: | OpenAIRE |
Externí odkaz: |