A $\overline{\partial}$ -Theoretical Proof of Hartogs’ Extension Theorem on Stein Spaces with Isolated Singularities
Autor: | Jean Ruppenthal |
---|---|
Rok vydání: | 2008 |
Předmět: |
Discrete mathematics
Pure mathematics Overline Mathematics::Complex Variables Dimension (graph theory) Extension (predicate logic) Space (mathematics) Hartogs' extension theorem symbols.namesake Differential geometry Fourier analysis symbols Gravitational singularity Geometry and Topology Mathematics |
Zdroj: | Journal of Geometric Analysis. 18:1127-1132 |
ISSN: | 1559-002X 1050-6926 |
Popis: | Let X be a connected normal Stein space of pure dimension d≥2 with finitely many isolated singularities. By solving a weighted \(\overline{\partial}\) -equation with compact support on a desingularization of X, we derive Hartogs’ Extension Theorem on X by the \(\overline{\partial }\) -idea due to Ehrenpreis. |
Databáze: | OpenAIRE |
Externí odkaz: |