Experimental seismic behavior of T-shaped double skin composite wall with steel truss
Autor: | Ganping Shu, Jian-Hong Han, Xiong-Liang Zhou, Guan-Gen Zhou, Ying Qin |
---|---|
Rok vydání: | 2021 |
Předmět: |
Materials science
business.industry Metals and Alloys Truss 020101 civil engineering 02 engineering and technology Building and Construction Structural engineering Flange 0201 civil engineering 020303 mechanical engineering & transports 0203 mechanical engineering Flexural strength Structural load Buckling Mechanics of Materials Fracture (geology) Shear strength business Ductility Civil and Structural Engineering |
Zdroj: | Journal of Constructional Steel Research. 184:106776 |
ISSN: | 0143-974X |
DOI: | 10.1016/j.jcsr.2021.106776 |
Popis: | The double skin composite wall (DSCW) with steel truss is an innovative lateral load resisting member which composed of two steel plates, core concrete, concrete-filled steel tubes (CFSTs) as boundary members, and steel truss connectors. The effects of the aspect ratio and the flange wall width on the seismic performance are investigated based on the quasi-static test of full-scale T-shaped DSCWs with steel truss. The failure mode, load-displacement response, shear strength, ductility, energy dissipation, shear deformation, and stress distribution of the specimens were analyzed. The test results showed that the failure mode of the T-shaped DSCW with steel truss specimens with aspect ratios of 2.0 and 2.5 was flexure-shear failure, which was characterized by shear buckling of the steel plate, local buckling, and fracture of the boundary members, and of crushing of core concrete. The T-shaped specimens with a small aspect ratio have a higher shear strength, ductility, energy dissipation capacity, and shear deformation proportion. The T-shaped specimen with a long flange wall also has a higher shear strength, but the ductility, energy dissipation capacity, and shear deformation proportion are small. The stress distribution indicates that the T-shaped specimen is more likely to failure due to the insufficient flexural strength of the boundary member. The theoretical formula for the flexural strength of T-shaped DSCW with steel truss is established, and the validation results show that the formula is accurate and safe. |
Databáze: | OpenAIRE |
Externí odkaz: |