Retrieval Pump Flexible Suction Hose Dynamic Response Induced by Impact of a Mixer Pump Jet

Autor: Carl W. Enderlin, Judith Ann Bamberger, Guillermo Terrones, M. White, W.H. Combs
Rok vydání: 1999
Předmět:
DOI: 10.2172/12541
Popis: Experiments were conducted to investigate whether it may be feasible to simultaneously mix and retrieve radioactive waste slurries that are stored in million-gallon, double-shell tanks at the Hanford Site in Richland, Washington. Oscillating mixer pumps, located near the floor of these tanks, are used to mobilize and mix the slurry prior to retrieval. Operational scenarios that may be beneficial for retrieval may require simultaneous operation of a decant/transfer pump and the jet mixer pumps. The effects of jet-induced agitation and jet impingement upon the decant/transfer pump's flexible suction hose have not previously been experimentally evaluated. Possible effects of the jet impacting the hose include hose fatigue, hose collision or entanglement with other structures, and induced static and dynamic loads on the decant/transfer pump equipment. The objective of this work was to create operating conditions in a test tank that produce a dynamic response (in the flexible suction hose upon impingement from an above-floor jet) that is similar to that anticipated in the actual tank. A scaling analysis was conducted to define the interactions between the jet, the tank floor and the suction hose. The complexity of scaling the multi-layer flexible hose (matching its hydroelastic parameters at full and 1/4-scale) led to an alternate approach, that of matching the expected full-scale forces on the full-scale hose in the scaled tank. Two types of tests were conducted: characterization of the jet velocity profile in the test tank at two axial locations from the nozzle and observation of the motion induced in the flexible retrieval hose from impact by the jet. The velocity profile of the jet in the test tank was measured to compare the measured profiles with profile predictions for an above-floor jet. These data were used to obtain a refined estimate of the velocity profile and therefore, the force acting upon the test article at a particular location in the tank. The hose motion and location within the test tank resulting from jet impingement were recorded by video. This visual record can be correlated with the data recorded by the data acquisition system. These data coupled with the velocity profile results, were used to estimate the forces required to induce motion in the hose.
Databáze: OpenAIRE