Targeted Data-driven Regularization for Out-of-Distribution Generalization

Autor: Sadegh Farhang, Mohammad Mahdi Kamani, Mehrdad Mahdavi, James Z. Wang
Rok vydání: 2020
Předmět:
Zdroj: KDD
DOI: 10.1145/3394486.3403131
Popis: Due to biases introduced by large real-world datasets, deviations of deep learning models from their expected behavior on out-of-distribution test data are worrisome. Especially when data come from imbalanced or heavy-tailed label distributions, or minority groups of a sensitive feature. Classical approaches to address these biases are mostly data- or application-dependent, hence are burdensome to tune. Some meta-learning approaches, on the other hand, aim to learn hyperparameters in the learning process using different objective functions on training and validation data. However, these methods suffer from high computational complexity and are not scalable to large datasets. In this paper, we propose a unified data-driven regularization approach to learn a generalizable model from biased data. The proposed framework, named as targeted data-driven regularization (TDR), is model- and dataset-agnostic, and employs a target dataset that resembles the desired nature of test data in order to guide the learning process in a coupled manner. We cast the problem as a bilevel optimization and propose an efficient stochastic gradient descent based method to solve it. The framework can be utilized to alleviate various types of biases in real-world applications. We empirically show, on both synthetic and real-world datasets, the superior performance of TDR for resolving issues stem from these biases.
Databáze: OpenAIRE