Relativistic and pseudorelativistic formulation of nonlinear envelope equations with spatiotemporal dispersion. I. Cubic-quintic systems
Autor: | A. Kotsampaseris, Graham S. McDonald, JM Christian |
---|---|
Rok vydání: | 2018 |
Předmět: |
Physics
Numerical analysis 01 natural sciences 010305 fluids & plasmas Quintic function Nonlinear system symbols.namesake Classical mechanics 0103 physical sciences symbols Direct integration of a beam 010306 general physics Nonlinear Sciences::Pattern Formation and Solitons Scalar field Schrödinger's cat |
Zdroj: | Physical Review A. 98 |
ISSN: | 2469-9934 2469-9926 |
DOI: | 10.1103/physreva.98.053842 |
Popis: | We consider an envelope equation with space-time symmetry for describing scalar waves in systems with spatiotemporal dispersion and a generic saturable nonlinearity. Exact bright and gray solitons are derived by direct integration methods and coordinate transformations, with the results for cubic-quintic systems [see companion article— Phys. Rev. A 98, 053842 (2018)] recovered in the limit of weak saturation. Classic predictions from a nonlinear Schrodinger formulation of the propagation problem are shown to emerge asymptotically as subsets of the more general spatiotemporal solutions. The robustness of the new solitons against perturbations to the local pulse shape is then tested by deploying integral stability criteria, symmetry principles, and numerical analysis. |
Databáze: | OpenAIRE |
Externí odkaz: |