Invertible Factorization over Multiplier Algebras
Autor: | Tavan T. Trent |
---|---|
Rok vydání: | 2012 |
Předmět: | |
Zdroj: | Integral Equations and Operator Theory. 75:151-164 |
ISSN: | 1420-8989 0378-620X |
DOI: | 10.1007/s00020-012-2017-1 |
Popis: | Let \({\mathcal{A}}\) denote the multiplier algebra of an E-valued reproducing kernel Hilbert space, \({H_E^2(k)}\) . Then when H2(k) is nice, we give necessary and sufficient conditions that T > 0 factors as A*A, where A and \({A^{-1} \in \mathcal{A}}\) . Such nice spaces include the Bergman and Hardy spaces on the unit polydisk and unit ball in \({\mathbb{C}^d}\) . |
Databáze: | OpenAIRE |
Externí odkaz: |