ORCHIDEE-PEAT (revision 4596), a model for northern peatland CO2, water and energy fluxes on daily to annual scales

Autor: Chunjing Qiu, Dan Zhu, Philippe Ciais, Bertrand Guenet, Gerhard Krinner, Shushi Peng, Mika Aurela, Christian Bernhofer, Christian Brümmer, Syndonia Bret-Harte, Housen Chu, Jiquan Chen, Ankur R Desai, Jiří Dušek, Eugénie S. Euskirchen, Krzysztof Fortuniak, Lawrence B. Flanagan, Thomas Friborg, Mateusz Grygoruk, Sébastien Gogo, Thomas Grünwald, Birger U. Hansen, David Holl, Elyn Humphreys, Miriam Hurkuck, Gerard Kiely, Janina Klatt, Lars Kutzbach, Chloé Largeron, Fatima Laggoun-Défarge, Magnus Lund, Peter M. Lafleur, Xuefei Li, Ivan Mammarella, Lutz Merbold, Mats B. Nilsson, Janusz Olejnik, Mikaell Ottosson-Löfvenius, Walter Oechel, Frans-Jan W. Parmentier, Matthias Peichl, Norbert Pirk, Olli Peltola, Włodzimierz Pawlak, Corinna Rebmann, Daniel Rasse, Janne Rinne, Gaius Shaver, Hans Peter Schmid, Matteo Sottocornola, Rainer Steinbrecher, Torsten Sachs, Marek Urbaniak, Donatella Zona, Klaudia Ziemblinska
Rok vydání: 2017
Popis: Peatlands store substantial amount of carbon, are vulnerable to climate change. To predict the fate of carbon stored in peatlands, the complex interactions between water, peat and vegetations need more attention. This study describes a modified version of the ORCHIDEE land surface model for simulating the hydrology, surface energy and CO2 fluxes of peatlands on daily to annual time scales. The model, referred to as ORCHIDEE-PEAT, includes a separate soil tile in each 0.5° grid-cell, defined from a global peatland map and identified with peat-specific soil hydraulic properties. Runoff from non-peat vegetation with a grid-cell containing a fraction of peat is routed to this peat soil tile, which maintains shallow water tables. The water table position separates oxic from anoxic decomposition. The model is evaluated against eddy-covariance (EC) observations from 30 northern peatland sites, with the maximum rate of carboxylation (Vcmax) being optimized at each site to match the peak of growing season gross primary productivity (GPP), derived from direct EC measurements. Regarding short-term variations from day to day, the model performance was good for the variations in GPP (r2 = 0.76, Nash-Sutcliff modeling efficiency, MEF = 0.76), with lesser accuracy for latent heat fluxes (LE, r2 = 0.42, MEF = 0.14) and Net ecosystem CO2 exchange (NEE, r2 = 0.38, MEF = 0.26). Seasonal variations in GPP, NEE and energy fluxes on monthly scales showed moderate to high r2 values ranging from 0.57 to 0.86. For spatial across-sites gradients of annual mean GPP, NEE and LE, r2 of 0.93, 0.27, and 0.71, respectively, were achieved. The water table variations are not well predicted (r2 < 0.1), likely due to the uncertain water input to the peat from surrounding areas. However, when using the observed water table in the carbon module to define the fraction of oxic and anoxic decomposition instead of the modeled water table, ORCHIDEE-PEAT shows a small improvement in reproducing NEE. Moreover, we found a significant relationship between optimized Vcmax and the latitude (temperature), which can better reflect the spatial gradients of annual NEE than using an average Vcmax value. In a future version of ORCHIDEE-PEAT, the influences of water table on photosynthesis and depth-dependent influences of soil temperature on respiration may be included.
Databáze: OpenAIRE