Two- and three-point functions at criticality: Monte Carlo simulations of the three-dimensional (q+1) -state clock model
Autor: | Martin Hasenbusch |
---|---|
Rok vydání: | 2020 |
Předmět: |
Physics
Monte Carlo method Conformal map 02 engineering and technology Renormalization group 021001 nanoscience & nanotechnology 01 natural sciences Critical point (mathematics) Criticality Lattice (order) 0103 physical sciences Operator product expansion Statistical physics Clock model 010306 general physics 0210 nano-technology |
Zdroj: | Physical Review B. 102 |
ISSN: | 2469-9969 2469-9950 |
DOI: | 10.1103/physrevb.102.224509 |
Popis: | We simulate the improved $(q+1)$-state clock model on the simple-cubic lattice at the critical point on lattices of a linear size up to $L=960$. We compute operator product expansion coefficients for the three-dimensional $XY$ universality class. These are compared with highly accurate estimates obtained by using the conformal bootstrap method. We find that the results are consistent. |
Databáze: | OpenAIRE |
Externí odkaz: |