Nonlinear Dirac equation in Bose-Einstein condensates: Preparation and stability of relativistic vortices
Autor: | Lincoln D. Carr, K. M. O'Hara, L. H. Haddad |
---|---|
Rok vydání: | 2015 |
Předmět: |
Condensed Matter::Quantum Gases
Physics Optical lattice Nonlinear Dirac equation Skyrmion Dirac (software) 01 natural sciences Atomic and Molecular Physics and Optics Spectral line 010305 fluids & plasmas law.invention Vortex law Quantum electrodynamics Quantum mechanics 0103 physical sciences Relativistic wave equations 010306 general physics Bose–Einstein condensate |
Zdroj: | Physical Review A. 91 |
ISSN: | 1094-1622 1050-2947 |
DOI: | 10.1103/physreva.91.043609 |
Popis: | We propose a detailed experimental procedure for preparing relativistic vortices, governed by the nonlinear Dirac equation, in a two-dimensional Bose-Einstein condensate (BEC) in a honeycomb optical lattice. Our setup contains Dirac points, in direct analogy to graphene. We determine a range of practical values for all relevant physical parameters needed to realize relativistic vortices in a BEC of $^{87}\mathrm{Rb}$ atoms. Seven distinct vortex types, including Anderson-Toulouse and Mermin-Ho skyrmion textures and half-quantum vortices, are obtained, and their discrete spectra and stability properties are calculated in a weak harmonic trap. We predict that most vortices are stable with a lifetime between $1$ and $10$ seconds. |
Databáze: | OpenAIRE |
Externí odkaz: |