A generalization of Wedderburn’s theorem
Autor: | Adil Yaqub, D. L. Outcalt |
---|---|
Rok vydání: | 1967 |
Předmět: | |
Zdroj: | Proceedings of the American Mathematical Society. 18:175-177 |
ISSN: | 1088-6826 0002-9939 |
DOI: | 10.1090/s0002-9939-1967-0202759-6 |
Popis: | For, otherwise, there would be more than q distinct qth powers of elements of R, since x4y (mod J) implies Xq4yq (mod J). Now, let aCGJ and let bGIR. Then bq=b and hence bq-bCJ. Therefore, by (ii), we have (2) a(bq b) = 0, (bq b)a = 0 (a E J, b arbitrary). Again, let aE J. Since J2 =(0), by (ii), therefore (3) (ab + b)q = abq + babq-1 + b2abq-2 + + bq-lab + bq, (4) (ba + b)q = bqa + babq-1 + b2abq-2 + + bq-lab + bq |
Databáze: | OpenAIRE |
Externí odkaz: |