Autor: |
E. J. A. Hubbard, Hillel Kugler, A. Amar |
Rok vydání: |
2021 |
Předmět: |
|
Popis: |
Computational methods and tools are a powerful complementary approach to experimental work for studying regulatory interactions in living cells and systems. We demonstrate the use of formal reasoning methods as applied to the Caenorhabditis elegans germ line, which is an accessible model system for stem cell research. The dynamics of the underlying genetic networks and their potential regulatory interactions are key for understanding mechanisms that control cellular decision-making between stem cells and differentiation. We model the “stem cell fate” versus entry into the “meiotic development” pathway decision circuit in the young adult germ line based on an extensive study of published experimental data and known/hypothesized genetic interactions. We apply a formal reasoning framework to derive predictive networks for control of differentiation. Using this approach we simultaneously specify many possible scenarios and experiments together with potential genetic interactions, and synthesize genetic networks consistent with all encoded experimental observations. In silico analysis of knock-down and overexpression experiments within our model recapitulate published phenotypes of mutant animals and can be applied to make predictions on cellular decision-making. This work lays a foundation for developing realistic whole tissue models of the C. elegans germ line where each cell in the model will execute a synthesized genetic network. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|