Design of Highly Efficient Light-Trapping Structures for Thin-Film Crystalline Silicon Solar Cells
Autor: | Jurgen Michel, Lionel C. Kimerling, Ching-yin Hong, Jifeng Liu, Xiaoman Duan, Ning-Ning Feng, Lirong Zeng |
---|---|
Rok vydání: | 2007 |
Předmět: |
Materials science
Silicon business.industry chemistry.chemical_element Grating Distributed Bragg reflector Electronic Optical and Magnetic Materials law.invention Anti-reflective coating Optics chemistry law Solar cell Optoelectronics Crystalline silicon Electrical and Electronic Engineering Thin film business Diffraction grating |
Zdroj: | IEEE Transactions on Electron Devices. 54:1926-1933 |
ISSN: | 0018-9383 |
DOI: | 10.1109/ted.2007.900976 |
Popis: | We present a design optimization of a highly efficient light-trapping structure to significantly increase the efficiency of thin-film crystalline silicon solar cells. The structure consists of an antireflection (AR) coating, a silicon active layer, and a back reflector that combines a diffractive reflection grating with a distributed Bragg reflector. We have demonstrated that with careful design optimization, the presented light-trapping structure can lead to a remarkable cell-efficiency enhancement for the cells with very thin silicon active layers (typically 2.0-10.0 mum) due to the significantly enhanced absorption in the wavelength range of 800-1100 nm. On the other hand, less enhancement has been predicted for much thicker cells (i.e.,>100 mum) due to the limited absorption increase in this wavelength range. According to our simulation, the overall cell efficiency can be doubled for a 2.0-mum-thick cell with light-trapping structure. It is found that the improvement is mainly contributed by the optimized AR coating and diffraction grating with the corresponding relative improvements of 36% and 54%, respectively. The simulation results show that the absolute cell efficiency of a 2.0-mum-thick cell with the optimal light-trapping structure can be as large as 12%. |
Databáze: | OpenAIRE |
Externí odkaz: |