Symmetric Sodium-Ion Battery Based on Dual-Electron Reactions of NASICON-Structured Na3MnTi(PO4)3 Material

Autor: Yu Zhou, Xiji Shao, Kedong Wang, Fuming Chen, You Zheng, Lingzhi Zhao, Jinzhu Zhao, Xianhua Hou, Kwok Ho Lam
Rok vydání: 2020
Předmět:
Zdroj: ACS Applied Materials & Interfaces. 12:30328-30335
ISSN: 1944-8252
1944-8244
Popis: Symmetric sodium-ion batteries possess promising features such as low cost, easy manufacturing process, and facile recycling post-process, which are suitable for the application of large-scale stationary energy storage. Herein, we proposed a symmetric sodium-ion battery based on dual-electron reactions of a NASICON-structured Na3MnTi(PO4)3 material. The Na3MnTi(PO4)3 electrode can deliver a stable capacity of up to 160 mAh g-1 with a Coulombic efficiency of 97% at 0.1 C by utilizing the redox reactions of Ti3+/4+, Mn2+/3+, and Mn3+/4+. This is the first time to investigate the symmetric sodium-ion full cell using Na3MnTi(PO4)3 as both cathode and anode in the organic electrolyte, demonstrating excellent reversibility and cycling performance with voltage plateaus of about 1.4 and 1.9 V. The full cell exhibits a reversible capacity of 75 mAh g-1 at 0.1 C and an energy density of 52 Wh kg-1. In addition, both ex situ X-ray diffraction (XRD) analysis and first-principles calculations are employed to investigate the sodiation mechanism and structural evolution. The current research provides a feasible strategy for the symmetric sodium-ion batteries to achieve high energy density.
Databáze: OpenAIRE