Entire solutions of the Fisher–KPP equation on the half line

Autor: Yoshihisa Morita, Bendong Lou, Junfan Lu
Rok vydání: 2019
Předmět:
Zdroj: European Journal of Applied Mathematics. 31:407-422
ISSN: 1469-4425
0956-7925
DOI: 10.1017/s0956792519000093
Popis: In this paper, we study the entire solutions of the Fisher–KPP (Kolmogorov–Petrovsky–Piskunov) equation ut = uxx + f(u) on the half line [0, ∞) with Dirichlet boundary condition at x = 0. (1) For any $c \ge 2\sqrt {f'(0)} $, we show the existence of an entire solution ${{\cal U}^c}(x,t)$ which connects the traveling wave solution φc(x + ct) at t = −∞ and the unique positive stationary solution V(x) at t = +∞; (2) We also construct an entire solution ${{\cal U}}(x,t)$ which connects the solution of ηt = f(η) at t = −∞ and V(x) at t = +∞.
Databáze: OpenAIRE