Autor: Louise Barthélemy, Bennasser Boulaamayel
Rok vydání: 1997
Předmět:
Zdroj: Positivity. 1:125-144
ISSN: 1385-1292
DOI: 10.1023/a:1009786324575
Popis: We consider a boundary value problem\(- v = {\text{f , }}v \in \phi (u){\text{ }}on]0,1[ E(v\left( 0 \right),v\left( 1 \right)) \mathrel\backepsilon (v\prime \left( 0 \right),\user1{ - }v\prime \left( 1 \right)) \) where ϕ is a maximal monotone operator in ℝ and E is a multivalued operator in ℝ2 with non decre asing resolvent. We introduce a condition on E which insures that the operator inL1 (0,1) associated to this problem has non decreasing resolvent, and caracterise the subsolutions of the problem. We give different examples of operatorsE satisfying this condition.
Databáze: OpenAIRE