Towards a more representative parametrisation of hydrological models via synthesizing the strengths of particle swarm optimisation and robust parameter estimation

Autor: T. Krauße, J. Cullmann
Rok vydání: 2011
DOI: 10.5194/hessd-8-2373-2011
Popis: The development of methods for estimating the parameters of hydrological models considering uncertainties has been of high interest in hydrological research over the last years. In particular methods which understand the estimation of hydrological model parameters as a geometric search of a set of robust performing parameter vectors by application of the concept of data depth found growing research interest. Bárdossy and Singh (2008) presented a first proposal and applied it for the calibration of a conceptual rainfall-runoff model with daily time step. Krauße and Cullmann (2011) further developed this method and applied it in a case study to calibrate a process oriented hydrological model with hourly time step focussing on flood events in a fast responding catchment. The results of both studies showed the potential of the application of the principle of data depth. However, also the weak point of the presented approach got obvious. The algorithm identifies a set of model parameter vectors with high model performance and subsequently generates a set of parameter vectors with high data depth with respect to the first set. These both steps are repeated iteratively until a stopping criterion is met. In the first step the estimation of the good parameter vectors is based on the Monte Carlo method. The major shortcoming of this method is that it is strongly dependent on a high number of samples exponentially growing with the dimensionality of the problem. In this paper we present another robust parameter estimation strategy which applies an approved search strategy for high-dimensional parameter spaces, the particle swarm optimisation in order to identify a set of good parameter vectors with given uncertainty bounds. The generation of deep parameters is according to Krauße and Cullmann (2011). The method was compared to the Monte Carlo based robust parameter estimation algorithm on the example of a case study in Krauße and Cullmann (2011) to calibrate the process-oriented distributed hydrological model focussing for flood forecasting in a small catchment characterised by extreme process dynamics. In a second case study the comparison is repeated on a problem with higher dimensionality considering further parameters of the soil module.
Databáze: OpenAIRE