Shock-induced deformation phenomena in magnetite and their consequences on magnetic properties
Autor: | Uta Gerhards, Boris Reznik, Jörg Fritz, Agnes Kontny |
---|---|
Rok vydání: | 2016 |
Předmět: |
010504 meteorology & atmospheric sciences
Magnetic domain Condensed matter physics Mineralogy Coercivity 010502 geochemistry & geophysics 01 natural sciences Magnetic susceptibility Magnetization Geophysics Lattice constant Geochemistry and Petrology Remanence Crystallite Saturation (magnetic) Geology 0105 earth and related environmental sciences |
Zdroj: | Geochemistry, Geophysics, Geosystems. 17:2374-2393 |
ISSN: | 1525-2027 |
DOI: | 10.1002/2016gc006338 |
Popis: | This study investigates the effects of shock waves on magnetic and microstructural behavior of multidomain magnetite from a magnetite-bearing ore, experimentally shocked to pressures of 5, 10, 20, and 30 GPa. Changes in apparent crystallite size and lattice parameter were determined by X-ray diffraction, and grain fragmentation and defect accumulation were studied by scanning and transmission electron microscopy. Magnetic properties were characterized by low-temperature saturation isothermal remanent magnetization (SIRM), susceptibility measurements around the Verwey transition as well as by hysteresis parameters at room temperature. It is established that the shock-induced refinement of magnetic domains from MD to SD-PSD range is a result of cooperative processes including brittle fragmentation of magnetite grains, plastic deformation with shear bands and twins as well as structural disordering in form of molten grains and amorphous nanoclusters. Up to 10 GPa, a decrease of coherent crystallite size, lattice parameter, saturation magnetization (Ms), and magnetic susceptibility and an increase in coercivity, SIRM, and width of Verwey transition are mostly associated with brittle grain fragmentation. Starting from 20 GPa, a slight recovery is documented in all magnetic and nonmagnetic parameters. In particular, the recovery in SIRM is correlated with an increase of the lattice constant. The recovery effect is associated with the increasing influence of shock heating/annealing at high shock pressures. The strong decrease of Ms at 30 GPa is interpreted as a result of strong lattice damage and distortion. Our results unravel the microstructural mechanisms behind the loss of magnetization and the modification of magnetic properties of magnetite and contribute to our understanding of shock-induced magnetic phenomena in impacted rocks on earth and in meteorites. |
Databáze: | OpenAIRE |
Externí odkaz: |