Streamflow Observations From Cameras: Large‐Scale Particle Image Velocimetry or Particle Tracking Velocimetry?
Autor: | Flavia Tauro, Salvatore Grimaldi, R. Piscopia |
---|---|
Rok vydání: | 2017 |
Předmět: |
010504 meteorology & atmospheric sciences
Computer science 0208 environmental biotechnology Field of view 02 engineering and technology Velocimetry 01 natural sciences 020801 environmental engineering Data set Particle image velocimetry Particle tracking velocimetry Visibility Scale (map) Event (particle physics) 0105 earth and related environmental sciences Water Science and Technology Remote sensing |
Zdroj: | Water Resources Research. 53:10374-10394 |
ISSN: | 1944-7973 0043-1397 |
DOI: | 10.1002/2017wr020848 |
Popis: | Image-based methodologies, such as large scale particle image velocimetry (LSPIV) and particle tracking velocimetry (PTV), have increased our ability to noninvasively conduct streamflow measurements by affording spatially distributed observations at high temporal resolution. However, progress in optical methodologies has not been paralleled by the implementation of image-based approaches in environmental monitoring practice. We attribute this fact to the sensitivity of LSPIV, by far the most frequently adopted algorithm, to visibility conditions and to the occurrence of visible surface features. In this work, we test both LSPIV and PTV on a data set of 12 videos captured in a natural stream wherein artificial floaters are homogeneously and continuously deployed. Further, we apply both algorithms to a video of a high flow event on the Tiber River, Rome, Italy. In our application, we propose a modified PTV approach that only takes into account realistic trajectories. Based on our findings, LSPIV largely underestimates surface velocities with respect to PTV in both favorable (12 videos in a natural stream) and adverse (high flow event in the Tiber River) conditions. On the other hand, PTV is in closer agreement than LSPIV with benchmark velocities in both experimental settings. In addition, the accuracy of PTV estimations can be directly related to the transit of physical objects in the field of view, thus providing tangible data for uncertainty evaluation. |
Databáze: | OpenAIRE |
Externí odkaz: |