Sturm–Liouville Problems with Transfer Condition Herglotz Dependent on the Eigenparameter: Eigenvalue Asymptotics
Autor: | Sonja Currie, Bruce A. Watson, Casey Bartels |
---|---|
Rok vydání: | 2021 |
Předmět: |
Applied Mathematics
010102 general mathematics Hilbert space Sturm–Liouville theory Operator theory Lambda 01 natural sciences Combinatorics Computational Mathematics symbols.namesake Transfer (group theory) Computational Theory and Mathematics 0103 physical sciences symbols 010307 mathematical physics 0101 mathematics Eigenvalues and eigenvectors Mathematics |
Zdroj: | Complex Analysis and Operator Theory. 15 |
ISSN: | 1661-8262 1661-8254 |
DOI: | 10.1007/s11785-021-01119-1 |
Popis: | We consider a Sturm–Liouville equation $$\ell y:=-y'' + qy = \lambda y$$ on the intervals $$(-a,0)$$ and (0, b) with $$a,b>0$$ and $$q \in L^2(-\,a,b)$$ . Boundary conditions $$y(-\,a)\cos \alpha = y'(-\,a)\sin \alpha $$ , $$y(b)\cos \beta =y'(b)\sin \beta $$ , where $$\alpha \in [0,\pi )$$ and $$\beta \in (0,\pi ]$$ , are imposed, together with transmission conditions rationally-dependent on the eigenparameter via $$\begin{aligned} -\,y(0^+)\left( \lambda \eta -\xi -\sum \limits _{i=1}^{N} \frac{b_i^2}{\lambda -c_i}\right)&= y'(0^+) - y'(0^-),\\ y'(0^-)\left( \lambda \kappa +\zeta -\sum \limits _{j=1}^{M}\frac{a_j^2}{\lambda -d_j}\right)&= y(0^+) - y(0^-), \end{aligned}$$ with $$b_i, a_j>0$$ for $$i=1,\ldots ,N,$$ and $$j=1,\dots ,M$$ . Here we take $$\eta , \kappa \ge 0$$ and $$N,M\in {\mathbb N}_0$$ . In Bartels et al. (Integr Equ Oper Theory 90(3):1–20, 2018), it was shown that this boundary value problem can be posed as a self-adjoint operator eigenvalue problem in a suitable Hilbert space. In the present work we develop eigenvalue asymptotics for this class of problem. |
Databáze: | OpenAIRE |
Externí odkaz: |