Additional file 1: of A small multigene hydroxyproline-O-galactosyltransferase family functions in arabinogalactan-protein glycosylation, growth and development in Arabidopsis

Autor: Debarati Basu, Tian, Lu, Wuda Wang, Shauni Bobbs, Herock, Hayley, Travers, Andrew, Showalter, Allan
Předmět:
Popis: Six supplemental tables, 14 supplemental figures and their corresponding legends. Table S1. GALT1, GALT3, GALT4, and GALT6 mutant and coding region information. Table S2. Amino acid identity/similarity among the predicted amino acid sequences of GALT1-GALT6 and HPGT1-HPGT3 to GT31 family by MATCHER ( http://mobyle.pasteur.fr/ ). Table S3. List of candidate AGP specific glycosyltranferases and Arabidopsis AGPs coexpressed with GALT2 and GALT5 as query genes using the Gene CAT coexpression tool. Table S4. Subcellular distribution of Hyp-GALT activity obtained from GALT1-GALT6 transiently expressed in N. tabacum. Table S5. List of AGP-specific glycosyltransferases and AGPs with their respective mutant phenotypes [15–22, 37, 57, 60, 62, 69, 91–97]. Table S6. List of primers used in this study. Figure S1. Predicted transmembrane regions of GALT1-GALT6 and HPGT1-HPGT3. Figure S2. Hydrophobic cluster (HCA) analysis of GALTs showing the DXD motif within a pocket of hydrophobic amino acids. Figure S3. Biochemical characterization of Hyp-GALT activity. Figure S4. Gene expression profile of Hyp-GALTs and GALT1 in different organs/tissues. Figure S5. Transcript levels of Hyp-GALTs in the developing seed coat depicted by http://seedgenenetwork.net/ [36]. Figure S6. Single infiltration in tobacco epidermal cells. Tobacco leaves were infiltrated with either with ST-GFP, HDELGFP, or GALT2-YFP as indicated. Size bar = 10 μm. Figure S7. RP-HPLC profiles of AGPs extracted from WT and single galt mutants. Figure S8. Pollen viability, pollen germination frequency and pollen tube growth of galt4 and galt6 mutants. Figure S9. Age-dependent leaf senescence phenotype of galt6-1 and galt6-2 mutant plants. Figure S10. Representative images of WT and galt roots treated with 50 μM β -Gal-Yariv reagent. Figure S11. Representative images of WT, galt1, galt3, galt4, and galt6 plants after 14 days of growth on MS plates supplemented with 100 mM NaCl. Figure S12. The galt mutants are insensitive to mannitol stress. Figure S13. Conditional root anisotropic growth defects of galt2-galt6 mutants and galt2galt5 double mutants compared to WT and galt1 plants. Figure S14. Root-bending assay of WT, galt1, galt3, galt4, and galt6 mutant seedlings. (PDF 2122 kb)
Databáze: OpenAIRE