Experimental and theoretical studies on the operating parameters of hydromechanical drilling

Autor: A. O Ihnatov, Ye. A Koroviaka, Jamil Haddad, B. A Tershak, T. M Kaliuzhna, V. V Yavorska
Rok vydání: 2022
Předmět:
Zdroj: Naukovyi Visnyk Natsionalnoho Hirnychoho Universytetu. :20-27
ISSN: 2223-2362
2071-2227
DOI: 10.33271/nvngu/2022-1/020
Popis: Purpose. To analyse certain complex components of the rock breaking act during the well construction stipulated by the design features of the technical means of hydromechanical drilling and diversity of manifestations of hydraulic and physicochemical properties of the activated circulation medium. Methodology. Physicochemical parameters of the process of active substance adsorption from the water solutions on the rock surfaces were studied in terms of their disperse material by identifying optimal ratio in the solid phase particles volume of the activated solution group with the recording of time interval of the adsorption equilibrium establishment. Features of bottomhole processes in terms of the operating modernized facilities of hydromechanical drilling were considered involving up-to-date methods of analytical analysis and experimental-laboratory studies, i.e. by using certain techniques of mathematical and physical modelling, methods for processing and interpretation of the research results by means of SolidWorks, STATGRAPHICS, D, and control-and-measuring equipment and materials. Findings. The peculiarities of the combined hydromechanical drilling technique have been analysed from the viewpoint of the creation of the most efficient conditions of bottomhole rock breaking. Since a considerable degree of the development of breaking processes is the practically proved factor of hydromechanical drilling, the rationalization and intensification of those processes may be achieved by means of controlled physicochemical effect of the surface active medium. The experimental study was carried out to analyse the directedness of the development and results of surface interaction adsorption within the boundary of phase separation as the main factor of intensification of the rock mass breaking. A comparative analysis was performed concerning the surface activity of the corresponding substances that differ in their schemes of dissociation in a water solution whose properties are to be corrected additionally to make them close to the ones peculiar for natural drill muds. Positive influence of the adsorption phenomenon on the results of contact interaction of breaking elements of hydromechanical facilities was examined; this phenomenon is shown in the decelerated wear of metal surfaces. Originality. Useful influence of the physicochemical properties of the substances under consideration decreases beginning from the ionogenic anion-active sulfonol towards the ionogenic cation-active katapin K and to the non-ionogenic substance OP-10 (-10). However, in terms of combining the compositions of the mentioned substances, it can be strengthened additionally. Practical value. The indicated laboratory and experimental studies are the basic ones to design the mode parameters of the washing programme for a hydromechanical drilling well; they belong to the main output data used while substantiating the design and technical-technological parameters of the modernized pellet impact devices.
Databáze: OpenAIRE