Identification of heavy-ion radiation-induced microRNAs in rice
Autor: | Jin-Ming Shi, Xiaoming Hang, Yeqing Sun, Zhenlong Cheng, Wenjian Li, Yingxia Xiang, Meng Zhang, Lei Huang, Shujian Liang |
---|---|
Rok vydání: | 2011 |
Předmět: |
Atmospheric Science
Oryza sativa biology Microarray ved/biology ved/biology.organism_classification_rank.species food and beverages Aerospace Engineering Astronomy and Astrophysics biology.organism_classification Phenotype Cell biology Geophysics Space and Planetary Science Seedling microRNA Relative biological effectiveness General Earth and Planetary Sciences Model organism Transcription factor |
Zdroj: | Advances in Space Research. 47:1054-1061 |
ISSN: | 0273-1177 |
Popis: | MicroRNAs (miRNAs) are a family of small non-coding RNAs, which play significant roles in regulating development and stress responses in plant. As an excellent model organism for studying the effects of environmental stress, rice has been used to assess the damage of the space radiation environment for decades. Heavy-ions radiation show higher relative biological effectiveness compared to other cosmic-rays radiation. To identify the specific miRNAs that underlie biological effects of heavy-ion radiation, the germinated seeds of rice were exposed to 1 Gy, 10 Gy and 20 Gy dose of 12 C heavy-ion radiation, respectively. Analysis of phenotype indicated that 20 Gy dose of heavy-ion radiation was the semi-lethal dose of rice seedling. The microarray of μparaflo™ chip was employed to monitor the expression profiles of miRNAs in rice ( Oryza sativa ) under 20 Gy dose of radiation stress. miR164a, miR164c, miR164d and miR156a-j were identified as heavy-ion radiation-induced miRNAs. miR164 and miR156 family were increased in all three exposed samples by using quantitative real-time PCR (qRT-RCP). As targets of miR156 and miR164, SQUAMOSA PROMOTER BINDING-LIKE (SPL) transcription factors and NAM/ATAF/CUC (NAC) transcription factors expression were down-regulated correlating with an up-regulated level of the regulated miRNAs. Since SPL transcription factors and NAC transcription factors regulated growth and development of plant, we used 2-dimension electrophoresis (2-DE) gel to analyze changes of functional proteins in 20 Gy exposed samples. It was evident that both the height and survival rates of seedlings were markedly decreased. The abundance of some developmentally regulated proteins was also changed. To our knowledge, this study is the first to report heavy-ion radiation stress responsive miRNAs in plant. Moreover, our findings are important to understand the molecular mechanism of space biology. |
Databáze: | OpenAIRE |
Externí odkaz: |