MetaFun: Unveiling Sex-based Differences in Multiple Transcriptomic Studies through Comprehensive Functional Meta-analysis

Autor: Pablo Malmierca-Merlo, Rubén Sánchez-Garcia, Rubén Grillo-Risco, Irene Pérez-Díez, José F. Català-Senent, Borja Gómez-Cabañes, Gonzalo Anton-Bernat, Helena Gómez-Martínez, María de la Iglesia-Vayá, Marta R. Hidalgo, Francisco Garcia-Garcia
Rok vydání: 2021
Předmět:
DOI: 10.1101/2021.07.13.451905
Popis: While sex-based differences in various health scenarios have been thoroughly acknowledged in the literature, we lack a deep analysis of sex as a variable in this context. To fill this knowledge gap, we created MetaFun as an easy-to-use web-based tool to meta-analyze multiple transcriptomic datasets with a sex-based perspective to gain major statistical power and biological soundness. Furthermore, MetaFun can be used to perform case-control meta-analyses, allowing researchers with basic programming skills to access this methodology.Availability and implementationMetaFun is freely available athttp://bioinfo.cipf.es/metafunThe back end was implemented in R and Java, and the front end was developed using AngularContactfgarcia@cipf.es,mhidalgo@cipf.esSupplementary informationR code available athttps://gitlab.com/ubb-cipf/metafunr
Databáze: OpenAIRE