Upper bounds for Ricci curvatures for submanifolds in Bochner-Kaehler manifolds
Autor: | Falleh R. Al-Solamy, Mehraj Ahmad Lone, Mohammad Shahid, Yoshio Matsuyama, Mohammed Jamali |
---|---|
Rok vydání: | 2020 |
Předmět: |
Pure mathematics
Mean curvature Mathematics::Complex Variables Applied Mathematics General Mathematics 010102 general mathematics Einstein manifold Codimension 01 natural sciences Riemannian space Complex space Norm (mathematics) Mathematics::Differential Geometry 0101 mathematics Algebraic number Mathematics::Symplectic Geometry Ricci curvature Mathematics |
Zdroj: | Tamkang Journal of Mathematics. 51 |
ISSN: | 2073-9826 0049-2930 |
DOI: | 10.5556/j.tkjm.51.2020.2967 |
Popis: | Chen established the relationship between the Ricci curvature and the squared norm of meancurvature vector for submanifolds of Riemannian space form with arbitrary codimension knownas Chen-Ricci inequality. Deng improved the inequality for Lagrangian submanifolds in complexspace form by using algebraic technique. In this paper, we establish the same inequalitiesfor different submanifolds of Bochner-Kaehler manifolds. Moreover, we obtain improvedChen-Ricci inequality for Kaehlerian slant submanifolds of Bochner-Kaehler manifolds. |
Databáze: | OpenAIRE |
Externí odkaz: |