Hamiltonicity in power graphs of a class of abelian groups
Autor: | Anahy Santiago Arguello, Juan José Montellano-Ballesteros, Peter F. Stadler |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Journal of Algebraic Combinatorics. 57:313-328 |
ISSN: | 1572-9192 0925-9899 |
DOI: | 10.1007/s10801-022-01172-9 |
Popis: | The undirected power graph $$\mathscr {G}(S)$$ G ( S ) of a semigroup S is an undirected graph with vertex set S where two vertices $$u,v\in S$$ u , v ∈ S are adjacent if and only if there is a positive integer m such that $$u^{m}=v$$ u m = v or $$v^{m}=u$$ v m = u . Here, we investigate the power graphs of a class of abelian groups and answer, in this case, the question whether or not the power graph is Hamiltonian. |
Databáze: | OpenAIRE |
Externí odkaz: |