Autor: | Michel Mollard, Sylvain Gravier, Charles Payan |
---|---|
Rok vydání: | 1999 |
Předmět: | |
Zdroj: | Geometriae Dedicata. 76:265-274 |
ISSN: | 0046-5755 |
DOI: | 10.1023/a:1005106901394 |
Popis: | We investigate tilings of the integer lattice in the Euclidean n-dimensional space. The tiles considered here are the union of spheres defined by the Manhattan metric. We give a necessary condition for the existence of such a tiling for Zn when n ≥ 2. We prove that this condition is sufficient when n=2. Finally, we give some tilings of Zn when n ≥ 3. |
Databáze: | OpenAIRE |
Externí odkaz: |