Autor: Michel Mollard, Sylvain Gravier, Charles Payan
Rok vydání: 1999
Předmět:
Zdroj: Geometriae Dedicata. 76:265-274
ISSN: 0046-5755
DOI: 10.1023/a:1005106901394
Popis: We investigate tilings of the integer lattice in the Euclidean n-dimensional space. The tiles considered here are the union of spheres defined by the Manhattan metric. We give a necessary condition for the existence of such a tiling for Zn when n ≥ 2. We prove that this condition is sufficient when n=2. Finally, we give some tilings of Zn when n ≥ 3.
Databáze: OpenAIRE