Growth patterns, chemical composition and oxygen consumption in early juvenileHyas araneus (Decapoda: Majidae) reared in the laboratory

Autor: B. Wilmes, J. Harms, M. E. Christiansen, U. Süsens, K. Anger
Rok vydání: 1992
Předmět:
Zdroj: Helgoländer Meeresuntersuchungen. 46:9-28
ISSN: 1438-3888
0174-3597
DOI: 10.1007/bf02366209
Popis: Early (instar I and II) juveniles of the spider crabHyas araneus were reared under constant conditions (12 °C, 32‰S) in the laboratory, and their growth, biochemical composition, and respiration were studied. Every second day, dry weight (W), ash-free dry weight (AFW), and contents of ash, organic and inorganic carbon (C), nitrogen (N), hydrogen (H), protein, chitin, lipid, and carbohydrates were measured, as well as oxygen consumption. Changes in the absolute amounts of W. AFW, and C, N, and H during the moulting cycle are described with various regression equations as functions of age within a given instar. These patterns of growth differ in part from those that have been observed during previous studies in larval stages of the same and some other decapod species, possibly indicating different growth strategies in larvae and juveniles. There were clear periodic changes in ash (% of W) and inorganic C (as % of total C), with initially very low and then steeply increasing values in postmoult, a maximum in intermoult, and decreasing figures during the premoult phase of each moulting cycle. Similar patterns were observed in the chitin fraction, reaching a maximum of 16% of W (31% of AFW). Ash, inorganic C, and chitin represent the major components of the exoskeleton and hence, changes in their amounts are associated with the formation and loss of cuticle material. Consequently, a high percentage of mineral matter was lost with the exuvia (76% of the late premoult [LPM] ash content, 74% of inorganic C), but relatively small fractions of LPM organic matter (15% of AFW, 11% of organic C, 5–6% of N and H). These cyclic changes in the cuticle caused an inverse pattern of variation in the percentage values (% of W) of AFW, organic C, N, H, and biochemical constituents other than chitin. When these measures of living biomass were related to, exclusively, the organic body fraction (AFM), much less variation was found during individual moulting cycles, with values of about 43–52% in organic C, 9–10% in N, 6–9% H, 31–49% of AFW in protein, 3–10% in lipid, and
Databáze: OpenAIRE