Compactness of embeddings of function spaces on quasi-bounded domains and the distribution of eigenvalues of related elliptic operators

Autor: Leszek Skrzypczak, Hans-Gerd Leopold
Rok vydání: 2013
Předmět:
Zdroj: Proceedings of the Edinburgh Mathematical Society. 56:829-851
ISSN: 1464-3839
0013-0915
DOI: 10.1017/s0013091513000333
Popis: We prove sufficient and necessary conditions for compactness of the Sobolev embeddings of Besov and Triebel–Lizorkin spaces defined on bounded and unbounded uniformly E-porous domains. The asymptotic behaviour of the corresponding entropy numbers is calculated. Some applications to the spectral properties of elliptic operators are described.
Databáze: OpenAIRE