On the König Graphs for a $$\boldsymbol 5 $$-Path and Its Spanning Supergraphs
Autor: | D. B. Mokeev, Dmitriy S. Malyshev |
---|---|
Rok vydání: | 2020 |
Předmět: |
Applied Mathematics
02 engineering and technology Disjoint sets 01 natural sciences Industrial and Manufacturing Engineering Vertex (geometry) 010101 applied mathematics Combinatorics 020303 mechanical engineering & transports 0203 mechanical engineering TheoryofComputation_ANALYSISOFALGORITHMSANDPROBLEMCOMPLEXITY 0101 mathematics MathematicsofComputing_DISCRETEMATHEMATICS Mathematics |
Zdroj: | Journal of Applied and Industrial Mathematics. 14:369-384 |
ISSN: | 1990-4797 1990-4789 |
DOI: | 10.1134/s1990478920020143 |
Popis: | We describe the hereditary class of graphs whose every subgraph has the property that the maximum number of disjoint $$5$$ -paths (paths on $$5 $$ vertices) is equal to the minimum size of the sets of vertices having nonempty intersection with the vertex set of each $$5 $$ -path. We describe this class in terms of the “forbidden subgraphs” and give an alternative description, using some operations on pseudographs. |
Databáze: | OpenAIRE |
Externí odkaz: |