Objective Measures of Cognitive Load Using Deep Multi-Modal Learning

Autor: Suku Nair, Eric C. Larson, Justin Wilson, Sandro Scielzo
Rok vydání: 2021
Předmět:
Zdroj: Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies. 5:1-35
ISSN: 2474-9567
Popis: The capability of measuring human performance objectively is hard to overstate, especially in the context of the instructor and student relationship within the process of learning. In this work, we investigate the automated classification of cognitive load leveraging the aviation domain as a surrogate for complex task workload induction. We use a mixed virtual and physical flight environment, given a suite of biometric sensors utilizing the HTC Vive Pro Eye and the E4 Empatica. We create and evaluate multiple models. And we have taken advantage of advancements in deep learning such as generative learning, multi-modal learning, multi-task learning, and x-vector architectures to classify multiple tasks across 40 subjects inclusive of three subject types --- pilots, operators, and novices. Our cognitive load model can automate the evaluation of cognitive load agnostic to subject, subject type, and flight maneuver (task) with an accuracy of over 80%. Further, this approach is validated with real-flight data from five test pilots collected over two test and evaluation flights on a C-17 aircraft.
Databáze: OpenAIRE