Solvability of a nonlinear three-dimensional system of difference equations with constant coefficients

Autor: Merve Kara, Yasin Yazlik
Rok vydání: 2021
Předmět:
Zdroj: Mathematica Slovaca. 71:1133-1148
ISSN: 1337-2211
0139-9918
DOI: 10.1515/ms-2021-0044
Popis: In this paper, we show that the following three-dimensional system of difference equations x n + 1 = y n x n − 2 a x n − 2 + b z n − 1 , y n + 1 = z n y n − 2 c y n − 2 + d x n − 1 , z n + 1 = x n z n − 2 e z n − 2 + f y n − 1 , n ∈ N 0 , $$\begin{equation*}x_{n+1}=\frac{y_{n}x_{n-2}}{ax_{n-2}+bz_{n-1}}, \quad y_{n+1}=\frac{z_{n}y_{n-2}}{cy_{n-2}+dx_{n-1}}, \quad z_{n+1}=\frac{x_{n}z_{n-2}}{ez_{n-2}+fy_{n-1}}, \quad n\in \mathbb{N}_{0},\end{equation*}$$ where the parameters a, b, c, d, e, f and the initial values x −i , y −i , z −i , i ∈ {0, 1, 2}, are complex numbers, can be solved, extending further some results in the literature. Also, we determine the forbidden set of the initial values by using the obtained formulas. Finally, an application concerning a three-dimensional system of difference equations are given.
Databáze: OpenAIRE