Periodic Boundary Layer Solutions of a Reaction–Diffusion Problem with Singularly Perturbed Boundary Conditions of the Third Kind
Autor: | N. N. Nefedov, E. I. Nikulin |
---|---|
Rok vydání: | 2020 |
Předmět: |
Lyapunov function
0209 industrial biotechnology Partial differential equation General Mathematics Operator (physics) 010102 general mathematics Mathematical analysis 02 engineering and technology 01 natural sciences symbols.namesake Boundary layer 020901 industrial engineering & automation Stability theory Ordinary differential equation Reaction–diffusion system symbols Boundary value problem 0101 mathematics Analysis Mathematics |
Zdroj: | Differential Equations. 56:1594-1603 |
ISSN: | 1608-3083 0012-2661 |
DOI: | 10.1134/s00122661200120083 |
Popis: | We prove the existence and study the stability of time-periodic boundary layer solutions for a two-dimensional reaction–diffusion problem with a small parameter multiplying the parabolic operator for the case of singularly perturbed boundary conditions of the third kind. An asymptotic approximation to such solutions with respect to the small parameter is constructed. Conditions under which these solutions are Lyapunov asymptotically stable, as well as conditions under which such solutions are unstable, are obtained. For the proof, we used results based on applying the asymptotic method of differential inequalities and the Krein–Rutman theorem. |
Databáze: | OpenAIRE |
Externí odkaz: | |
Nepřihlášeným uživatelům se plný text nezobrazuje | K zobrazení výsledku je třeba se přihlásit. |