Fast Discrete Finite Hankel Transform for Equations in a Thin Annulus
Autor: | T. E. Romanenko, Stanislav Budzinskiy |
---|---|
Rok vydání: | 2020 |
Předmět: |
Mathematical analysis
Zero (complex analysis) Function (mathematics) Mathematics::Spectral Theory Eigenfunction 01 natural sciences 010101 applied mathematics Computational Mathematics 0103 physical sciences Annulus (firestop) 010307 mathematical physics 0101 mathematics Poisson's equation Spectral method Laplace operator Eigenvalues and eigenvectors Mathematics |
Zdroj: | Computational Mathematics and Modeling. 31:364-368 |
ISSN: | 1573-837X 1046-283X |
Popis: | An algorithm is proposed for a fast discrete finite Hankel transform of a function in a thin annulus. The transform arises in a natural way in the Neumann boundary-value problem for the Poisson equation in an annulus when spectral methods are applied for its numerical solution. The proposed algorithm uses the limiting properties of eigenvalues and eigenfunctions of the Laplace operator as the annulus thickness goes to zero. |
Databáze: | OpenAIRE |
Externí odkaz: |