Modelling human blastocysts by reprogramming fibroblasts into iBlastoids
Autor: | Amander T. Clark, Jan Schröder, Daniel Poppe, Joseph Chen, Yu Bo Yang Sun, Ryan Lister, Sue Mei Lim, Jose M. Polo, Jia Ping Tan, Xiaodong Liu, Monika Mohenska, Jennifer Zenker, Owen J. L. Rackham, Guizhi Sun, Yichen Zhou, John F. Ouyang, Asma Aberkane |
---|---|
Rok vydání: | 2021 |
Předmět: |
0303 health sciences
Multidisciplinary Embryogenesis Trophoblast Embryo Gene mutation Biology Cell biology 03 medical and health sciences 0302 clinical medicine medicine.anatomical_structure Epiblast embryonic structures medicine Blastocyst Stem cell Reprogramming reproductive and urinary physiology 030217 neurology & neurosurgery 030304 developmental biology |
Zdroj: | Nature. 591:627-632 |
ISSN: | 1476-4687 0028-0836 |
DOI: | 10.1038/s41586-021-03372-y |
Popis: | Human pluripotent and trophoblast stem cells have been essential alternatives to blastocysts for understanding early human development1–4. However, these simple culture systems lack the complexity to adequately model the spatiotemporal cellular and molecular dynamics that occur during early embryonic development. Here we describe the reprogramming of fibroblasts into in vitro three-dimensional models of the human blastocyst, termed iBlastoids. Characterization of iBlastoids shows that they model the overall architecture of blastocysts, presenting an inner cell mass-like structure, with epiblast- and primitive endoderm-like cells, a blastocoel-like cavity and a trophectoderm-like outer layer of cells. Single-cell transcriptomics further confirmed the presence of epiblast-, primitive endoderm-, and trophectoderm-like cells. Moreover, iBlastoids can give rise to pluripotent and trophoblast stem cells and are capable of modelling, in vitro, several aspects of the early stage of implantation. In summary, we have developed a scalable and tractable system to model human blastocyst biology; we envision that this will facilitate the study of early human development and the effects of gene mutations and toxins during early embryogenesis, as well as aiding in the development of new therapies associated with in vitro fertilization. Human fibroblasts are reprogrammed to generate blastocyst-like structures called iBlastoids, which recapitulate aspects of embryo implantation. |
Databáze: | OpenAIRE |
Externí odkaz: |