Application of non-commutative algebra to a soluble fermionic model
Autor: | I. C. Charret, C. E. I. Carneiro, M.T. Thomaz, O. Rojas Santos, S. M. de Souza, E. V. Corrêa Silva |
---|---|
Rok vydání: | 1999 |
Předmět: |
Statistics and Probability
Partition function (statistical mechanics) Fermionic field Anharmonicity Fermion Condensed Matter Physics Translational partition function Grand canonical ensemble symbols.namesake Quantum mechanics symbols Commutative algebra Exterior algebra Mathematics Mathematical physics |
Zdroj: | Physica A: Statistical Mechanics and its Applications. 264:204-221 |
ISSN: | 0378-4371 |
DOI: | 10.1016/s0378-4371(98)00398-7 |
Popis: | We explore the properties of the non-commutative Grassmann algebra to obtain the high-temperature expansion of the grand canonical partition function for self-interacting fermionic systems. As an application, we consider the anharmonic fermionic oscillator, the simplest model in Quantum Mechanics with self-interacting fermions that is exactly soluble. The knowledge of the exact expression for its grand canonical partition function enables us to check the β -expansion obtained using our Grassmann-algebra-based technique. |
Databáze: | OpenAIRE |
Externí odkaz: |