Spectrality of the planar Sierpinski family
Autor: | Xing-Gang He, Li-Xiang An, Li Tao |
---|---|
Rok vydání: | 2015 |
Předmět: | |
Zdroj: | Journal of Mathematical Analysis and Applications. 432:725-732 |
ISSN: | 0022-247X |
DOI: | 10.1016/j.jmaa.2015.06.064 |
Popis: | Let μ be a Borel probability measure with compact support in R 2 . μ is called a spectral measure if there exists a countable set Λ ⊂ R 2 such that E Λ = { e − 2 π i 〈 λ , x 〉 : λ ∈ Λ } is an orthonormal basis for L 2 ( μ ) . In this note we prove that the integral Sierpinski measure μ A , D is a spectral measure if and only if ( A , D ) is admissible. This completely settles the spectrality of integral Sierpinski measures in R 2 . |
Databáze: | OpenAIRE |
Externí odkaz: |