Popis: |
Mainstream FPGA tools contain an extensive set of user-controlled compilation options and internal optimization strategies that significantly impact the design quality. These compilation and optimization parameters create a complex design space that human designers may not be able to effectively explore in a time-efficient manner. In this work we describe DATuner, an open-source extensible distributed autotuning framework for optimizing FPGA designs and design automation tools using an ensemble of search techniques managed by multi-armed bandit algorithms. DATuner is designed for a distributed environment that uses parallel searches to amortize the significant runtime overhead of the CAD tools. DATuner provides convenient interface for extension to user-supplied tools, which enables the end users to apply DATuner to design tools/flows of their interest. We demonstrate the effectiveness and extensibility of DATuner using three case studies, which include clock frequency optimization for FPGA compilation, fixed-point optimization, and autotuning logic synthesis transformations. |