The gluing formula, conformal scaling, and geometry
Autor: | Klaus Kirsten, Yoonweon Lee |
---|---|
Rok vydání: | 2021 |
Předmět: |
Pure mathematics
010102 general mathematics Conformal map Mathematics::Spectral Theory Mathematics::Geometric Topology 01 natural sciences Manifold Differential geometry 0103 physical sciences Content (measure theory) 010307 mathematical physics Geometry and Topology 0101 mathematics Mathematics::Symplectic Geometry Scaling Analysis Mathematics |
Zdroj: | Annals of Global Analysis and Geometry. 59:537-547 |
ISSN: | 1572-9060 0232-704X |
DOI: | 10.1007/s10455-021-09763-8 |
Popis: | We exploit conformal transformations of gluing formulas to realize connections between zeta functions of Laplacians and associated Dirichlet-to-Neumann map zeta functions. Furthermore, the geometric content in gluing formulas is identified and explicit results are given for a three-dimensional manifold. |
Databáze: | OpenAIRE |
Externí odkaz: |