The gluing formula, conformal scaling, and geometry

Autor: Klaus Kirsten, Yoonweon Lee
Rok vydání: 2021
Předmět:
Zdroj: Annals of Global Analysis and Geometry. 59:537-547
ISSN: 1572-9060
0232-704X
DOI: 10.1007/s10455-021-09763-8
Popis: We exploit conformal transformations of gluing formulas to realize connections between zeta functions of Laplacians and associated Dirichlet-to-Neumann map zeta functions. Furthermore, the geometric content in gluing formulas is identified and explicit results are given for a three-dimensional manifold.
Databáze: OpenAIRE