Well-posed integro-differential equations in a new pair of weight-free Sobolev spaces
Autor: | Yu. R. Agachev, M. Yu. Pershagin |
---|---|
Rok vydání: | 2017 |
Předmět: |
Well-posed problem
General Mathematics 010102 general mathematics Mathematical analysis Mathematics::Analysis of PDEs 01 natural sciences Domain (mathematical analysis) Elliptic boundary value problem Sobolev inequality 010101 applied mathematics Sobolev space Interpolation space 0101 mathematics Trace operator Mathematics Sobolev spaces for planar domains |
Zdroj: | Russian Mathematics. 61:71-75 |
ISSN: | 1934-810X 1066-369X |
DOI: | 10.3103/s1066369x17080084 |
Popis: | We are dealing with general boundary-value problem for linear integro-differential equations on a segment of the real axis. In the case under consideration the order of internal differential operators is higher than the order of exterior one. We prove that the problem is wellposed in the Hadamard sense in a new pair of weight-free Sobolev spaces. |
Databáze: | OpenAIRE |
Externí odkaz: |