A method for computing all values λ such thatA+λBhas a multiple eigenvalue

Autor: Bor Plestenjak, Andrej Muhič
Rok vydání: 2014
Předmět:
Zdroj: Linear Algebra and its Applications. 440:345-359
ISSN: 0024-3795
DOI: 10.1016/j.laa.2013.10.015
Popis: Given a pair of n × n matrices A and B, we consider the problem of finding values λ such that the matrix A + λ B has a multiple eigenvalue. Our approach solves the problem using only the standard matrix computation tools. By formulating the problem as a singular two-parameter eigenvalue problem, we construct matrices Δ 1 and Δ 0 of size 3 n 2 × 3 n 2 with the property that the finite regular eigenvalues of the singular pencil Δ 1 − λ Δ 0 are the values λ such that A + λ B has a multiple eigenvalue. We show that these values can be computed numerically from Δ 1 and Δ 0 by the staircase algorithm.
Databáze: OpenAIRE