Real-Time Structured Light Scanning Characterization of Surface Topography of Direct Energy Deposited 316L Stainless Steel

Autor: Weijun Shen, Xing Zhang, Yiliang Liao, Beiwen Li
Rok vydání: 2022
Zdroj: Volume 1: Additive Manufacturing; Biomanufacturing; Life Cycle Engineering; Manufacturing Equipment and Automation; Nano/Micro/Meso Manufacturing.
Popis: Direct energy deposition (DED) has been widely used for additive manufacturing of metallic components toward a variety of applications. Surface characteristics of DED-fabricated components play key roles in determining the property and performance. Besides the average surface roughness which has been extensively investigated in literature, surface skewness and kurtosis are critical for surface integrity, particularly its durability due to stress concentration points. In this work, surface skewness and kurtosis of DED-fabricated 316L stainless steel as affected by processing parameters are investigated. In particular, the surface quality is measured using a microscopic structured light scanning (SLS) system, which is a relatively fast, low-cost, high-efficiency dimensional inspection metrology as compared to other methods. The results demonstrated the correlations between the printing parameters (laser power and scanning speed) and the surface topography of DED printed parts. It is found that the skewness and kurtosis of the surface are more sensitive to the change in scanning speed within a relatively low laser power range. Skewness is positively correlated with the scanning speed, while kurtosis shows a negative correlation with the scanning speed. Given a high scanning speed, Kurtosis and Skewness are more sensitive to the changes of scanning speed. Understanding the relationship between DED processing parameters and areal surface characteristics provides guidance and insights for process optimization and post-processing design towards additive manufacturing of high-performance metallic components.
Databáze: OpenAIRE