Effect of microwave operating power and reflow time on the microstructure and tensile properties of Sn–3.0Ag–0.5Cu/Cu solder joints

Autor: Mardiana Said, Ahmad Azmin Mohamad, Nurulakmal Mohd Sharif, Muhammad Firdaus Mohd Nazeri
Rok vydání: 2021
Předmět:
Zdroj: Soldering & Surface Mount Technology. 34:31-44
ISSN: 0954-0911
Popis: Purpose This paper aims to investigate the morphology and tensile properties of SAC305 solder alloy under the influence of microwave hybrid heating (MHH) for soldering at different microwave parameters. Design/methodology/approach Si wafer was used as susceptor in MHH for solder reflow. Microwave operating power for medium and high ranging from 40 to 140 s reflow time was used to investigate their effect on the microstructure and strength of SAC305/Cu solder joints. The morphology and elemental composition of the intermetallic compound (IMC) joint were evaluated on the top surface and cross-sectional view. Findings IMC formation transformed from scallop-like to elongated scallop-like structure for medium operating power and scallop-like to planar-like structure for high operating power when exposed to longer reflow time. Compositional and phase analysis confirmed that the observed IMCs consist of Cu6Sn5, Cu3Sn and Ag3Sn. A thinner IMC layer was formed at medium operating power, 80 s (2.4 µm), and high operating power, 40 s (2.5 µm). The ultimate tensile strength at high operating power, 40 s (45.5 MPa), was 44.9% greater than that at medium operating power, 80 s (31.4 MPa). Originality/value Microwave parameters with the influence of Si wafer in MHH in soldering have been developed and optimized. A microwave temperature profile was established to select the appropriate parameter for solder reflow. For this MHH soldering method, the higher operating power and shorter reflow time are preferable.
Databáze: OpenAIRE