Novel Mechanical Interface Design for Automotive Starting Systems

Autor: Jonny Carlos da Silva, Alvaro C. Michelotti, Lauro Cesar Nicolazzi
Rok vydání: 2019
Předmět:
Zdroj: Automotive Innovation. 2:14-25
ISSN: 2522-8765
2096-4250
DOI: 10.1007/s42154-019-00052-6
Popis: Stop–start vehicles (SSVs) represent a potential alternative for improving internal combustion engine (ICE) efficiency. SSVs provide ICEs with the functionality of turning the engine off during traffic halts and restarting it without intervention by the driver. This strategy reduces fuel consumption, especially in dense urban traffic areas, and contributes to emissions reduction to meet green emissions targets. The most widely adopted SSV system has a mechanical interface to connect the electric starter motor to the ICE, which requires increased robustness compared with standard starting motors. This requirement allows the motor to withstand a higher number of engine start cycles compared with a standard starting motor. Nevertheless, it is a critical problem for wider adoption of SSVs. As SSV systems usually are based on the conventional starting system, its durability and noise remains a critical issue to be addressed by automakers. The typical pinion–ring gear interface uses intermittent gear meshing to form a transient coupling interface. The research reported here presents the development of an innovative mechanical interface for starting systems, called the permanent coupling (PC)-type interface, which reduces noise and increases durability compared with the existing design. The results obtained by a functional prototype of the PC-type mechanical interface confirm the feasibility of the proposed concept. The methodology is based on a product development process integrated with lumped-parameter modeling and virtual simulation aimed at reducing failures during prototype testing. The new mechanical interface was proven to be a good candidate for increasing the use of SSVs in the automotive market.
Databáze: OpenAIRE