Popis: |
The paper deals with topical issues of the modern applied mathematics, in particular, an investigation of approximative properties of Abel–Poisson-type operators on the so-called generalized Hölder’s function classes. It is known, that by the generalized Hölder’s function classes we mean the classes of continuous -periodic functions determined by a first-order modulus of continuity. The notion of the modulus of continuity, in turn, was formulated in the papers of famous French mathematician Lebesgue in the beginning of the last century, and since then it belongs to the most important characteristics of smoothness for continuous functions, which can describe all natural processes in mathematical modeling. At the same time, the Abel-Poisson-type operators themselves are the solutions of elliptic-type partial differential equations. That is why the results obtained in this paper are significant for subsequent research in the field of applied mathematics. The theorem proved in this paper characterizes the upper bound of deviation of continuous -periodic functions determined by a first-order modulus of continuity from their Abel–Poisson-type operators. Hence, the classical Kolmogorov–Nikol’skii problem in A.I. Stepanets sense is solved on the approximation of functions from the classes by their Abel–Poisson-type operators. We know, that the Abel–Poisson-type operators, in partial cases, turn to the well-known in applied mathematics Poisson and Jacobi–Weierstrass operators. Therefore, from the obtained theorem follow the asymptotic equalities for the upper bounds of deviation of functions from the Hölder’s classes of order from their Poisson and Jacobi–Weierstrass operators, respectively. The obtained equalities generalize the known in this direction results from the field of applied mathematics. |