Tripled coincidence theorems for monotone mappings in partially ordered metric spaces
Autor: | Marin Borcut |
---|---|
Rok vydání: | 2012 |
Předmět: | |
Zdroj: | Creative Mathematics and Informatics. 21:135-142 |
ISSN: | 1843-441X 1584-286X |
DOI: | 10.37193/cmi.2012.02.15 |
Popis: | In this paper, we establish tripled coincidence point theorems for a pair of mappings F : X × X × X → X and g : X → X satisfying a nonlinear contractive condition ordered metric spaces. Presented theorems extend several existing results in the literature: [Borcut, M. and Berinde, V., Tripled coincidente point theorems for contractive type mappings in partially ordered metric spaces, Aplied Mathematics and Computation, 218 (2012), No. 10, 5929–5936], and Berinde, Borcut in article [Berinde, V., Borcut, M., Tripled fixed point theorems for contractive type mappings in partially ordered metric spaces, Nonlinear Anal., 74 (2011), 4889-4897]. |
Databáze: | OpenAIRE |
Externí odkaz: |