Tooth whorl structure, growth and function in a helicoprionid chondrichthyan Karpinskiprion (nom. nov.) (Eugeneodontiformes) with a revision of the family composition*

Autor: Oleg A. LEBEDEV, Wayne M. ITANO, Zerina JOHANSON, Alexander S. ALEKSEEV, Moya M. SMITH, Aleksey V. IVANOV, Igor V. NOVIKOV
Rok vydání: 2023
Předmět:
Zdroj: Earth and Environmental Science Transactions of the Royal Society of Edinburgh. :1-24
ISSN: 1755-6929
1755-6910
DOI: 10.1017/s1755691022000251
Popis: Restudy of Campyloprion annectans Eastman, 1902 from North America demonstrated that neither specimen included is diagnostic at the species level; thus, the species name is a nomen dubium. Since this species was designated as the type species of the genus, this requires suppression of the generic name also. Another species earlier assigned to Campyloprion, Campyloprion ivanovi Karpinsky, 1924 is used as a type for a newly established genus Karpinskiprion Lebedev et Itano gen. nov. The composition of the family Helicoprionidae Karpinsky, 1911 is reviewed, and a new family Helicampodontidae Itano et Lebedev fam. nov. is erected. A new specimen of Karpinskiprion ivanovi (Karpinsky, 1924) recently discovered in the Volgograd Region of Russia is the most complete Karpinskiprion specimen ever found. It unambiguously demonstrates the coiled nature of these tooth whorls and presents information on their developmental stages. During organogeny, cutting blades of the crown became reshaped, and basal spurs progressively elongated, forming a grater. Whorl growth occurred by addition of new crowns to the earlier mineralised base followed by later spur growth. In contrast to consistently uniform cutting blades, spurs are often malformed and bear traces of growth interruption. Both sides of the outer coil of the tooth whorl bear lifetime wear facets. The youngest (lingual) crowns are as yet unaffected by wear. The best-preserved facets show parallel radially directed scratch marks. The upper jaw dentition of Karpinskiprion is unknown, but we suggest that the faceted areas resulted from interaction with the antagonistic dental structures here. Three possible hypotheses for this interaction are suggested: (a) two opposing whorls acted as scissor blades, moving alternately from one side to another; (b) the lower tooth whorl fitted between paired parasymphyseal tooth whorls of the opposing jaw; or (c) the lower tooth whorl fitted into a dental pavement in the upper jaw.
Databáze: OpenAIRE