An OptimalL∞–error Estimate for an Approximation of a Parabolic Variational Inequality
Autor: | Mohamed Haiour, Salah Boulaaras, Mohamed El Amine Bencheikh Le Hocine |
---|---|
Rok vydání: | 2015 |
Předmět: |
Control and Optimization
Mathematical analysis 010103 numerical & computational mathematics 01 natural sciences Finite element method Computer Science Applications 010101 applied mathematics Uniform norm Scheme (mathematics) Constructive algorithms Signal Processing Variational inequality Uniqueness 0101 mathematics Analysis Mathematics |
Zdroj: | Numerical Functional Analysis and Optimization. 37:1-18 |
ISSN: | 1532-2467 0163-0563 |
DOI: | 10.1080/01630563.2015.1109520 |
Popis: | In this article, an optimal error estimate for parabolic variational inequalities is studied. Existence and uniqueness of the solution is provided by the introduction of a constructive algorithm. An optimally L∞-asymptotic behavior in uniform norm is proved using the semi-implicit time scheme combined with the finite element spatial approximation. The approach is based on the concept of subsolutions. |
Databáze: | OpenAIRE |
Externí odkaz: |